Освоение архитектуры MLOPS Джаджа Рамана

Товар

12 514  ₽
Освоение архитектуры MLOPS Джаджа Рамана

Доставка

  • Почта России

    от 990 ₽

  • Курьерская доставка EMS

    от 1290 ₽

Характеристики

Артикул
15098593609
Состояние
Новый
Język publikacji
angielski
Okładka
miękka
Rok wydania
2023
Wydawnictwo
inne (BPB Publications)
Tytuł
Mastering MLOps Architecture: From Code to Deployment: Manage the
Autor
Jhajj, Raman
Nośnik
książka papierowa
Liczba stron
226
Gatunek
Sztuczna Inteligencja
ISBN
9789355519498

Описание

Mastering MLOps Architecture

Jhajj Raman

MASTERING MLOPS ARCHITECTURE JHAJJ RAMAN
  • Wydawca: BPB Publications
  • Rok wydania: 2023
  • Oprawa: Miękka
  • Format: 19.1x23.5cm
  • Ilość stron: 226
  • Język: angielski

Harness the power of MLOps for managing real time machine learning project cycle

MLOps, a combination of DevOps, data engineering, and machine learning, is crucial for delivering high-quality machine learning results due to the dynamic nature of machine learning data. This book delves into MLOps, covering its core concepts, components, and architecture, demonstrating how MLOps fosters robust and continuously improving machine learning systems.

By covering the end-to-end machine learning pipeline from data to deployment, the book helps readers implement MLOps workflows. It discusses techniques like feature engineering, model development, A/B testing, and canary deployments. The book equips readers with knowledge of MLOps tools and infrastructure for tasks like model tracking, model governance, metadata management, and pipeline orchestration. Monitoring and maintenance processes to detect model degradation are covered in depth. Readers can gain skills to build efficient CI/CD pipelines, deploy models faster, and make their ML systems more reliable, robust and production-ready.

Overall, the book is an indispensable guide to MLOps and its applications for delivering business value through continuous machine learning and AI.

WHAT YOU WILL LEARN

● Architect robust MLOps infrastructure with components like feature stores.

● Leverage MLOps tools like model registries, metadata stores, pipelines.

● Build CI/CD workflows to deploy models faster and continually.

● Monitor and maintain models in production to detect degradation.

● Create automated workflows for retraining and updating models in production.

WHO THIS BOOK IS FOR

Machine learning specialists, data scientists, DevOps professionals, software development teams, and all those who want to adopt the DevOps approach in their agile machine learning experiments and applications. Prior knowledge of machine learning and Python programming is desired.

[Stamp,9789355519498,1/28/2024 1:20:19 AM]

Гарантии

  • Гарантии

    Мы работаем по договору оферты и предоставляем все необходимые документы.

  • Лёгкий возврат

    Если товар не подошёл или не соответсвует описанию, мы поможем вернуть его.

  • Безопасная оплата

    Банковской картой, электронными деньгами, наличными в офисе или на расчётный счёт.

Отзывы о товаре

Рейтинг товара 0 / 5

0 отзывов

Russian English Polish